On the Optimal Parameter Choice for Elliptic Curve Cryptosystems Using Isogeny
نویسندگان
چکیده
The isogeny for elliptic curve cryptosystems was initially used for the efficient improvement of order counting methods. Recently, Smart proposed the countermeasure using isogeny for resisting the refined differential power analysis by Goubin (Goubin’s attack). In this paper, we examine the countermeasure using isogeny against zero-value point (ZVP) attack that is generalization of Goubin’s attack. We show that some curves require higher order of isogeny to prevent ZVP attack. Moreover, we prove that this countermeasure cannot transfer a class of curve to the efficient curve that is secure against ZVP attack. This class satisfies that the curve order is odd and (−3/p) = −1 for the base field p, and includes three SECG curves. In the addition, we compare some efficient algorithms that are secure against both Goubin’s attack and ZVP attack, and present the most efficient method of computing the scalar multiplication for each curve from SECG. Finally, we discuss another improvement for the efficient scalar multiplication, namely the usage of the point (0, y) for the base point of curve parameters. We are able to improve about 11% for double-and-add-always method, when the point (0, y) exists in the underlying curve or its isogeny.
منابع مشابه
Efficient elliptic curve cryptosystems
Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation...
متن کاملPublic-Key Cryptosystem Based on Isogenies
A new general mathematical problem, suitable for publickey cryptosystems, is proposed: morphism computation in a category of Abelian groups. In connection with elliptic curves over finite fields, the problem becomes the following: compute an isogeny (an algebraic homomorphism) between the elliptic curves given. The problem seems to be hard for solving with a quantum computer. ElGamal public-key...
متن کاملConstructing elliptic curve isogenies in quantum subexponential time
Given two elliptic curves over a finite field having the same cardinality and endomorphism ring, it is known that the curves admit an isogeny between them, but finding such an isogeny is believed to be computationally difficult. The fastest known classical algorithm takes exponential time, and prior to our work no faster quantum algorithm was known. Recently, public-key cryptosystems based on t...
متن کاملAn efficient blind signature scheme based on the elliptic curve discrete logarithm problem
Elliptic Curve Cryptosystems (ECC) have recently received significant attention by researchers due to their high performance such as low computational cost and small key size. In this paper a novel untraceable blind signature scheme is presented. Since the security of proposed method is based on difficulty of solving discrete logarithm over an elliptic curve, performance of the proposed scheme ...
متن کاملDiffie-Hellman type key exchange protocols based on isogenies
In this paper, we propose some Diffie-Hellman type key exchange protocols using isogenies of elliptic curves. The first method which uses the endomorphism ring of an ordinary elliptic curve $ E $, is a straightforward generalization of elliptic curve Diffie-Hellman key exchange. The method uses commutativity of the endomorphism ring $ End(E) $. Then using dual isogenies, we propose...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEICE Transactions
دوره 88-A شماره
صفحات -
تاریخ انتشار 2004